Last updated: 2022-08-23

Checks: 6 1

Knit directory: RatXcan_Training/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220711) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e8ceeb9. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.Rhistory
    Ignored:    output/
    Ignored:    scripts/.Rhistory

Untracked files:
    Untracked:  .DS_Store
    Untracked:  .gitignore
    Untracked:  analysis/Plot_Predictability_Heritability.Rmd
    Untracked:  code/helpers.R

Unstaged changes:
    Modified:   analysis/.DS_Store
    Modified:   analysis/Analyze_PrediXcan_Results.Rmd
    Modified:   analysis/EN_Prediction_Model.Rmd
    Modified:   analysis/Run_PrediXcan.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Run_PrediXcan.Rmd) and HTML (docs/Run_PrediXcan.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 28edc16 sabrina-mi 2022-08-22 add link and change titles
html 28edc16 sabrina-mi 2022-08-22 add link and change titles
Rmd 3902557 sabrina-mi 2022-08-22 add analyze predixcan result
html 3902557 sabrina-mi 2022-08-22 add analyze predixcan result
Rmd 6e9507f sabrina-mi 2022-08-22 wflow_rename("analysis/PrediXcan.Rmd", "analysis/Run_PrediXcan.Rmd")
html 6e9507f sabrina-mi 2022-08-22 wflow_rename("analysis/PrediXcan.Rmd", "analysis/Run_PrediXcan.Rmd")

Predict

Predict gene expression using elastic net model trained on Ac tissue data.

conda activate imlabtools
# The path to Box drive is usually ~/Box, but may be different depending on operating system and Box Drive version
DIR=/Users/sabrinami/Library/CloudStorage/Box-Box/imlab-data/data-Github/Rat_Genomics_Paper_Pipeline

METAXCAN=/Users/sabrinami/Github/MetaXcan/software
GENO=$DIR/data/rat_genotypes_LD_pruned_0.95
MODEL=$DIR/Results/sql
OUTPUT=$DIR/Results/PrediXcan/metabolic_traits
python $METAXCAN/Predict.py \
--model_db_path $MODEL/Ac_best_prediXcan_db.db \
--text_genotypes \
 $GENO/chr*.round2_impute2_3473.txt  \
--on_the_fly_mapping METADATA "{}_{}_{}_{}" \
--text_sample_ids $GENO/samples_Rat_metab_phenos_file \
--prediction_output $OUTPUT/rat_metabolic_Ac_best__predict.txt  \
--prediction_summary_output $OUTPUT/rat_metabolic_Ac_best__summary.txt \
--throw

python $METAXCAN/Predict.py \
--model_db_path $MODEL/Il_best_prediXcan_db.db \
--text_genotypes \
 $GENO/chr*.round2_impute2_3473.txt  \
--on_the_fly_mapping METADATA "{}_{}_{}_{}" \
--text_sample_ids $GENO/samples_Rat_metab_phenos_file \
--prediction_output $OUTPUT/rat_metabolic_Il_best__predict.txt  \
--prediction_summary_output $OUTPUT/rat_metabolic_Il_best__summary.txt \
--throw

python $METAXCAN/Predict.py \
--model_db_path $MODEL/Lh_best_prediXcan_db.db \
--text_genotypes \
 $GENO/chr*.round2_impute2_3473.txt  \
--on_the_fly_mapping METADATA "{}_{}_{}_{}" \
--text_sample_ids $GENO/samples_Rat_metab_phenos_file \
--prediction_output $OUTPUT/rat_metabolic_Lh_best__predict.txt  \
--prediction_summary_output $OUTPUT/rat_metabolic_Lh_best__summary.txt \
--throw

python $METAXCAN/Predict.py \
--model_db_path $MODEL/Pl_best_prediXcan_db.db \
--text_genotypes \
 $GENO/chr*.round2_impute2_3473.txt  \
--on_the_fly_mapping METADATA "{}_{}_{}_{}" \
--text_sample_ids $GENO/samples_Rat_metab_phenos_file \
--prediction_output $OUTPUT/rat_metabolic_Pl_best__predict.txt  \
--prediction_summary_output $OUTPUT/rat_metabolic_Pl_best__summary.txt \
--throw

python $METAXCAN/Predict.py \
--model_db_path $MODEL/Vo_best_prediXcan_db.db \
--text_genotypes \
 $GENO/chr*.round2_impute2_3473.txt  \
--on_the_fly_mapping METADATA "{}_{}_{}_{}" \
--text_sample_ids $GENO/samples_Rat_metab_phenos_file \
--prediction_output $OUTPUT/rat_metabolic_Vo_best__predict.txt  \
--prediction_summary_output $OUTPUT/rat_metabolic_Vo_best__summary.txt \
--throw

Association

library(readr)
library(tidyverse)
tissues=c("Ac", "Il", "Lh", "Pl", "Vo")
"%&%" = function(a,b) paste(a,b,sep="")
dir="/Users/sabrinami/Library/CloudStorage/Box-Box/imlab-data/data-Github/Rat_Genomics_Paper_Pipeline/"

Before running association, we filter predicted expression and phenotype files so that individuals are listed in the same order.

res.dir = dir %&% "Results/prediXcan/metabolic_traits/"
meta.dir = "/Users/sabrinami/Github/MetaXcan/software"
pheno.dir = dir %&% "data/expression/"

fn_write_files = function(tis){
  pred_expr <- read_tsv(dir %&% "Results/prediXcan/metabolic_traits/rat_metabolic_" %&% tis %&% "_best__predict.txt", col_names = TRUE)
all_rats <- read_tsv(pheno.dir %&% "all_names.txt", col_names = TRUE)
  pred_expr <- pred_expr %>% filter(!(FID  %in% all_rats$ID))
  write_tsv(pred_expr, dir %&% "Results/prediXcan/metabolic_traits/rat_metabolic_" %&% tis %&% "_target_set__predict.txt", col_names = TRUE)
  pheno <- read_csv(pheno.dir %&% "processed_obesity_rat_Palmer_phenotypes.csv", col_names = TRUE) %>% filter(!(rat_rfid  %in% all_rats$ID))
  write_tsv(pheno, pheno.dir %&% "processed_obesity_rat_Palmer_phenotypes_target_set.tsv", col_names = TRUE)

}
for (tis in tissues) {
  fn_write_files(tis)
}

Now run an association test for each column of our phenotype file.

for (tis in tissues){
  n_pheno=length(colnames(pheno))-1
  # use all pheno columns except rat_rfid and idx
  for(i in 2:n_pheno){
    trait <- colnames(pheno)[i]
    runASSOC <- "python3 " %&% meta.dir %&% "/PrediXcanAssociation.py " %&% "--expression_file " %&% res.dir %&% "rat_metabolic_" %&% tis %&% "_target_set__predict.txt --input_phenos_file " %&% pheno.dir %&% "processed_obesity_rat_Palmer_phenotypes_target_set.tsv " %&% "--input_phenos_column " %&% trait %&%  " --output " %&% res.dir %&% tis %&% "__association_" %&% trait %&% ".txt --verbosity 9 --throw"
    system(runASSOC)
  }
}

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.8.3     rstudioapi_0.11  whisker_0.4      knitr_1.39      
 [5] magrittr_1.5     workflowr_1.6.2  R6_2.4.1         rlang_1.0.2     
 [9] fastmap_1.1.0    stringr_1.4.0    tools_4.0.3      xfun_0.31       
[13] cli_3.3.0        git2r_0.27.1     jquerylib_0.1.4  htmltools_0.5.2 
[17] ellipsis_0.3.2   rprojroot_1.3-2  yaml_2.2.1       digest_0.6.27   
[21] tibble_3.0.4     lifecycle_0.2.0  crayon_1.3.4     later_1.1.0.1   
[25] sass_0.4.1       vctrs_0.4.1      fs_1.5.0         promises_1.1.1  
[29] glue_1.6.2       evaluate_0.15    rmarkdown_2.14   stringi_1.5.3   
[33] compiler_4.0.3   bslib_0.3.1      pillar_1.4.6     backports_1.1.10
[37] jsonlite_1.7.1   httpuv_1.5.4     pkgconfig_2.0.3