Last updated: 2022-08-23

Checks: 6 1

Knit directory: RatXcan_Training/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220711) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e8ceeb9. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.Rhistory
    Ignored:    output/
    Ignored:    scripts/.Rhistory

Untracked files:
    Untracked:  .DS_Store
    Untracked:  .gitignore
    Untracked:  analysis/Plot_Predictability_Heritability.Rmd
    Untracked:  code/helpers.R

Unstaged changes:
    Modified:   analysis/.DS_Store
    Modified:   analysis/Analyze_PrediXcan_Results.Rmd
    Modified:   analysis/Run_PrediXcan.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Analyze_PrediXcan_Results.Rmd) and HTML (docs/Analyze_PrediXcan_Results.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 28edc16 sabrina-mi 2022-08-22 add link and change titles
html 28edc16 sabrina-mi 2022-08-22 add link and change titles
Rmd 3902557 sabrina-mi 2022-08-22 add analyze predixcan result
html 3902557 sabrina-mi 2022-08-22 add analyze predixcan result

Identify Significant Genes

library(readr)
library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
✔ ggplot2 3.3.6     ✔ dplyr   1.0.2
✔ tibble  3.0.4     ✔ stringr 1.4.0
✔ tidyr   1.1.2     ✔ forcats 0.5.0
✔ purrr   0.3.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
tis="Ac"
"%&%" = function(a,b) paste(a,b,sep="")
dir="/Users/sabrinami/Library/CloudStorage/Box-Box/imlab-data/data-Github/Rat_Genomics_Paper_Pipeline/"

Read in association results for each phenotype, and combine in one dataframe.

library(stringr)
filelist <- list.files(dir %&% "Results/PrediXcan/metabolic_traits", pattern = "Ac__association_", full.names = TRUE)
full_df <- data.frame()

for(file in filelist) {
  assoc_file <- read_tsv(file, col_names = TRUE)
  # extract phenotype from regex matching in file name
  pheno_id <- str_match(file, "association_(.*?).txt")[,2]
  tempo <- cbind(assoc_file, metabolic_trait=pheno_id) %>% select(-c(status))
  full_df <- rbind(full_df, tempo)
} 

── Column specification ────────────────────────────────────────────────────────
cols(
  gene = col_character(),
  effect = col_double(),
  se = col_double(),
  zscore = col_double(),
  pvalue = col_double(),
  n_samples = col_double(),
  status = col_logical()
)


── Column specification ────────────────────────────────────────────────────────
cols(
  gene = col_character(),
  effect = col_double(),
  se = col_double(),
  zscore = col_double(),
  pvalue = col_double(),
  n_samples = col_double(),
  status = col_logical()
)


── Column specification ────────────────────────────────────────────────────────
cols(
  gene = col_character(),
  effect = col_double(),
  se = col_double(),
  zscore = col_double(),
  pvalue = col_double(),
  n_samples = col_double(),
  status = col_logical()
)


── Column specification ────────────────────────────────────────────────────────
cols(
  gene = col_character(),
  effect = col_double(),
  se = col_double(),
  zscore = col_double(),
  pvalue = col_double(),
  n_samples = col_double(),
  status = col_logical()
)


── Column specification ────────────────────────────────────────────────────────
cols(
  gene = col_character(),
  effect = col_double(),
  se = col_double(),
  zscore = col_double(),
  pvalue = col_double(),
  n_samples = col_double(),
  status = col_logical()
)


── Column specification ────────────────────────────────────────────────────────
cols(
  gene = col_character(),
  effect = col_double(),
  se = col_double(),
  zscore = col_double(),
  pvalue = col_double(),
  n_samples = col_double(),
  status = col_logical()
)


── Column specification ────────────────────────────────────────────────────────
cols(
  gene = col_character(),
  effect = col_double(),
  se = col_double(),
  zscore = col_double(),
  pvalue = col_double(),
  n_samples = col_double(),
  status = col_logical()
)


── Column specification ────────────────────────────────────────────────────────
cols(
  gene = col_character(),
  effect = col_double(),
  se = col_double(),
  zscore = col_double(),
  pvalue = col_double(),
  n_samples = col_double(),
  status = col_logical()
)


── Column specification ────────────────────────────────────────────────────────
cols(
  gene = col_character(),
  effect = col_double(),
  se = col_double(),
  zscore = col_double(),
  pvalue = col_double(),
  n_samples = col_double(),
  status = col_logical()
)


── Column specification ────────────────────────────────────────────────────────
cols(
  gene = col_character(),
  effect = col_double(),
  se = col_double(),
  zscore = col_double(),
  pvalue = col_double(),
  n_samples = col_double(),
  status = col_logical()
)

We first filter for all significant genes for any of the 10 phenotypes. The last two lines of the chunk count the number of traits each gene is significantly associated with and the number of significant genes for each trait.

#full_df <- read_tsv("/Users/natashasanthanam/Github/rat-genomic-analysis/data/rat_metabolic_traits_best_Ac_full_assocs.txt", col_names = TRUE)

tempo_df <- full_df %>% filter(pvalue <  9.279881e-06)

#428 sig genes
tempo_df %>% group_by(gene) %>% summarise(n = n())
`summarise()` ungrouping output (override with `.groups` argument)
# A tibble: 429 x 2
   gene                   n
   <chr>              <int>
 1 ENSRNOG00000000245     1
 2 ENSRNOG00000000246     1
 3 ENSRNOG00000000571     1
 4 ENSRNOG00000000763     1
 5 ENSRNOG00000000775     1
 6 ENSRNOG00000000778     1
 7 ENSRNOG00000000867     1
 8 ENSRNOG00000000891     3
 9 ENSRNOG00000000902     2
10 ENSRNOG00000000974     2
# … with 419 more rows
#all 11 traits
tempo_df %>% group_by(metabolic_trait) %>% summarise(n = n())
`summarise()` ungrouping output (override with `.groups` argument)
# A tibble: 10 x 2
   metabolic_trait            n
   <chr>                  <int>
 1 bmi_bodylength_w_tail     30
 2 bmi_bodylength_wo_tail    19
 3 bodylength_w_tail        101
 4 bodylength_wo_tail        33
 5 bodyweight                82
 6 epifat                    46
 7 fasting_glucose           12
 8 parafat                   26
 9 retrofat                 185
10 tail_length               53

For each trait, identify the tissue each gene is most significantly associated with and the sign of effect. We interpret the sign for the most significant association as the direction of effect on a given trait.

suppressMessages(library(Rfast))
pheno <- read_csv(dir %&% "data/expression/processed_obesity_rat_Palmer_phenotypes.csv", col_names=TRUE)
n_pheno = ncol(pheno) - 1
for(i in 2:n_pheno) {
  trait <- colnames(pheno)[i]
  filelist <- list.files(dir %&% "Results/prediXcan/metabolic_traits", pattern = "association_" %&% trait %&% ".txt", full.names = TRUE)
  tempo <- data.frame(gene= as.character())
  for(file in filelist) {
    tis <- str_match(file, "Results/prediXcan/metabolic_traits/(.*?)__association")[,2]
    df <- suppressMessages(read_tsv(file)) %>% select(c(gene, effect, pvalue))
    new_eff <- paste("effect", tis, sep = "_")
    new_pval <- paste("pvalue", tis, sep = "_")
    colnames(df)[2] <- new_eff
    colnames(df)[3] <- new_pval 
    
    tempo <- full_join(tempo, df,  by = "gene")
  }
  # returns most significant tissue for each gene
  most_sig = rowMins(as.matrix(tempo[,c(3,5,7,9,11)]))
  Ac <- tempo[most_sig == 1, c(1,2)] %>% rename(effect = effect_Ac )
  Il <- tempo[most_sig == 2, c(1,4)] %>% rename(effect = effect_Il )
  Lh <- tempo[most_sig == 3, c(1,6)] %>% rename(effect = effect_Lh )
  Pl <- tempo[most_sig == 4, c(1,8)] %>% rename(effect = effect_Pl )
  Vo <- tempo[most_sig == 5, c(1,10)] %>% rename(effect = effect_Vo )
  
  df <- rbind(Ac, Il, Lh, Pl, Vo) 
  df <- df %>% mutate(sign = sign(effect))
  write_tsv(df, dir %&% "Results/prediXcan/metabolic_traits/most_sig_zscores/" %&% trait %&% "_avg_zscore.txt", col_names = FALSE)
}

Plot Association Results

The orth.rats file gives a dictionary between human genes and the corresponding gene in rats, queried from the Biomart database.

In the following chunk, we use it to annotate our dataframe with gene symbols. Then we replace metabolic trait names and add a column marking all the significant genes.

orth.rats <- read_tsv(dir %&% "data/expression/ortholog_genes_rats_humans.tsv")

── Column specification ────────────────────────────────────────────────────────
cols(
  ensembl_gene_id = col_character(),
  external_gene_name = col_character(),
  rnorvegicus_homolog_ensembl_gene = col_character(),
  rnorvegicus_homolog_associated_gene_name = col_character()
)
full_df <- full_df %>% filter(metabolic_trait == "bmi_bodylength_w_tail" | metabolic_trait ==  "bodylength_w_tail"| metabolic_trait == "bodyweight" | metabolic_trait == "fasting_glucose" | metabolic_trait == "epifat" |  metabolic_trait == "retrofat" | metabolic_trait == "parafat")

full_df <- full_df %>% mutate(gene_name = orth.rats[match(full_df$gene, orth.rats$rnorvegicus_homolog_ensembl_gene),4]$rnorvegicus_homolog_associated_gene_name, .before = effect)

full_df$metabolic_trait[full_df$metabolic_trait == "bmi_bodylength_w_tail" ] <- "Body Mass Index (BMI) with tail"
full_df$metabolic_trait[full_df$metabolic_trait == "bodylength_w_tail" ] <- "Body length including tail"
full_df$metabolic_trait[full_df$metabolic_trait == "bodyweight" ] <- "Body weight"
full_df$metabolic_trait[full_df$metabolic_trait == "fasting_glucose" ] <- "Fasting Glucose"
full_df$metabolic_trait[full_df$metabolic_trait == "epifat" ] <- "Epididymal fat"
full_df$metabolic_trait[full_df$metabolic_trait == "retrofat" ] <- "Retroperitoneal fat"
full_df$metabolic_trait[full_df$metabolic_trait == "parafat" ] <- "Parametrial fat"

full_df <- full_df %>% mutate(bf_sig = ifelse(full_df$pvalue <= 9.279881e-06, "Yes", "No"))

We add loci information and separate results for each phenotype.

gene_annot <- readRDS(dir %&% "data/gene_annotation.RDS") %>% select(c("chr", "gene_id", "start", "end")) %>% rename(gene = gene_id)

tempo_manhatt <- inner_join(gene_annot, full_df, by = "gene")
tempo_manhatt$chr <- as.numeric(tempo_manhatt$chr)

bmi_manhat <- tempo_manhatt %>% filter(metabolic_trait == "Body Mass Index (BMI) with tail") 
bmi_manhat <- bmi_manhat %>% mutate(gene_name = orth.rats[match(bmi_manhat$gene, orth.rats$rnorvegicus_homolog_ensembl_gene), 4]$rnorvegicus_homolog_associated_gene_name)

height_manhat <- tempo_manhatt %>% filter(metabolic_trait == "Body length including tail") 
height_manhat <- height_manhat %>% mutate(gene_name = orth.rats[match(height_manhat$gene, orth.rats$rnorvegicus_homolog_ensembl_gene), 4]$rnorvegicus_homolog_associated_gene_name)

Note: I’m not sure where to find the Human_phenomeXcan_all_traits.txt file, but I assume it is a dictionary for human genes significantly associated to a set of phenotypes and their homologous rat genes. Until I find out how this file was queried, we skip this step and continue to the Manhattan plots. In any case, we have all the data we need to generate the plots, we only reference the human genes to label some of the significant genes in the figure.

human_height_genes <- read_tsv("/Users/natashasanthanam/Downloads/Human_phenomeXcan_all_traits.txt", col_names = TRUE)
human_height_genes <- human_height_genes %>% mutate(rat_gene = orth.rats[match(human_height_genes$gene_name, orth.rats$external_gene_name), 4]$rnorvegicus_homolog_associated_gene_name) %>% filter(pvalue_Height <= 0.01)


human_bmi_genes <- read_tsv("/Users/natashasanthanam/Downloads/Human_phenomeXcan_all_traits.txt", col_names = TRUE) 
colnames(human_bmi_genes)[2] = "pvalue_BMI"
human_bmi_genes <- human_bmi_genes %>% mutate(rat_gene = orth.rats[match(human_bmi_genes$gene_name, orth.rats$external_gene_name), 4]$rnorvegicus_homolog_associated_gene_name) %>% filter(pvalue_BMI <= 0.01 )

Generate Manhattan plots for BMI and height. If you wanted to add labels for human genes, you can uncomment the geom_label_repel line.

library(ggrepel)
data_cum <- bmi_manhat %>% 
  group_by(chr) %>% 
  summarise(max_bp = as.numeric(max(start))) %>% 
  mutate(bp_add = lag(cumsum(max_bp), default = 0)) %>% 
  select(chr, bp_add)
`summarise()` ungrouping output (override with `.groups` argument)
gwas_data <- bmi_manhat %>% 
  inner_join(data_cum, by = "chr") %>% 
  mutate(bp_cum = start + bp_add)


axis_set <- gwas_data %>% 
  group_by(chr) %>% 
  summarize(center = mean(bp_cum))
`summarise()` ungrouping output (override with `.groups` argument)
ylim <- gwas_data %>% 
  filter(pvalue == min(pvalue)) %>% 
  mutate(ylim = abs(floor(log10(pvalue))) + 2) %>% 
  pull(ylim)

sig <-  0.05/(5388)

bmi_manhplot <- ggplot(gwas_data, aes(x = bp_cum, y = -log10(pvalue), color = as_factor(chr), size = -log10(pvalue))) +
  geom_hline(yintercept = -log10(sig), color = "grey40", linetype = "dashed") + 
  geom_hline(yintercept = -log10(0.0001), color = "red", linetype = "dashed") + 
  geom_point(alpha = 0.75, shape = ifelse((gwas_data$zscore >= 4.863456), 17, ifelse(gwas_data$zscore <= -4.863456, 25, 19)), fill = "dodgerblue4") +
#  geom_label_repel(aes(label=ifelse((pvalue <=  sig & gene_name %in% human_bmi_genes$rat_gene), gene_name, "")), size = 6) + 
  ylim(c(0,8)) + 
  scale_x_continuous(label = axis_set$chr, breaks = axis_set$center) +
  scale_color_manual(values = rep(c("dodgerblue4", "midnightblue"), unique(length(axis_set$chr)))) +
  scale_size_continuous(range = c(0.5,3)) +
  labs(x = NULL, 
       y = expression(-log[10](italic(p)))) + 
  theme_minimal() +
  theme( 
    legend.position = "none",
    panel.border = element_blank(),
    panel.grid.major.x = element_blank(),
    panel.grid.minor.x = element_blank(),
    axis.text.x = element_text(angle = 90, size = 12), 
    axis.text.y = element_text( size = 12,  vjust = 0), 
    axis.title = element_text(size = 20))

bmi_manhplot
Warning: Removed 2 rows containing missing values (geom_point).

Version Author Date
3902557 sabrina-mi 2022-08-22
data_cum <- height_manhat %>% 
  group_by(chr) %>% 
  summarise(max_bp = as.numeric(max(start))) %>% 
  mutate(bp_add = lag(cumsum(max_bp), default = 0)) %>% 
  select(chr, bp_add)
`summarise()` ungrouping output (override with `.groups` argument)
gwas_data <- height_manhat %>% 
  inner_join(data_cum, by = "chr") %>% 
  mutate(bp_cum = start + bp_add)


axis_set <- gwas_data %>% 
  group_by(chr) %>% 
  summarize(center = mean(bp_cum))
`summarise()` ungrouping output (override with `.groups` argument)
ylim <- gwas_data %>% 
  filter(pvalue == min(pvalue)) %>% 
  mutate(ylim = abs(floor(log10(pvalue))) + 2) %>% 
  pull(ylim)

sig <-   0.05/(5388)

height_manhplot <- ggplot(gwas_data, aes(x = bp_cum, y = -log10(pvalue), 
                                  color = as_factor(chr), size = -log10(pvalue))) +
  geom_hline(yintercept = -log10(sig), color = "grey40", linetype = "dashed") + 
  geom_hline(yintercept = -log10(0.0001), color = "red", linetype = "dashed") + 
  geom_point(alpha = 0.75, shape = ifelse((gwas_data$zscore >= 4.863456), 17, ifelse(gwas_data$zscore <= -4.863456, 25, 19)), fill = "dodgerblue4") +
#  geom_label_repel(aes(label=ifelse((pvalue <=  sig & gene_name %in% human_height_genes$rat_gene), gene_name, "")), size = 6) + 
  ylim(c(0,10)) + 
  scale_x_continuous(label = axis_set$chr, breaks = axis_set$center) +
  scale_color_manual(values = rep(c("dodgerblue4", "midnightblue"), unique(length(axis_set$chr)))) +
  scale_size_continuous(range = c(0.5,3)) +
  labs(x = NULL, 
       y = expression(-log[10](italic(p)))) + 
  theme_minimal() +
  theme( 
    legend.position = "none",
    panel.border = element_blank(),
    panel.grid.major.x = element_blank(),
    panel.grid.minor.x = element_blank(),
    axis.text.x = element_text(angle = 90, size = 12), 
    axis.text.y = element_text( size = 12,  vjust = 0), 
    axis.title = element_text(size = 20))

height_manhplot
Warning: Removed 3 rows containing missing values (geom_point).

Version Author Date
3902557 sabrina-mi 2022-08-22

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggrepel_0.9.1   forcats_0.5.0   stringr_1.4.0   dplyr_1.0.2    
 [5] purrr_0.3.4     tidyr_1.1.2     tibble_3.0.4    ggplot2_3.3.6  
 [9] tidyverse_1.3.0 readr_1.4.0    

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.8.3     lubridate_1.7.9  assertthat_0.2.1 rprojroot_1.3-2 
 [5] digest_0.6.27    utf8_1.1.4       R6_2.4.1         cellranger_1.1.0
 [9] backports_1.1.10 reprex_0.3.0     evaluate_0.15    highr_0.8       
[13] httr_1.4.2       pillar_1.4.6     rlang_1.0.2      readxl_1.3.1    
[17] rstudioapi_0.11  whisker_0.4      jquerylib_0.1.4  blob_1.2.1      
[21] rmarkdown_2.14   labeling_0.4.2   munsell_0.5.0    broom_0.8.0     
[25] compiler_4.0.3   httpuv_1.5.4     modelr_0.1.8     xfun_0.31       
[29] pkgconfig_2.0.3  htmltools_0.5.2  tidyselect_1.1.0 workflowr_1.6.2 
[33] fansi_0.4.1      crayon_1.3.4     dbplyr_1.4.4     withr_2.3.0     
[37] later_1.1.0.1    grid_4.0.3       jsonlite_1.7.1   gtable_0.3.0    
[41] lifecycle_0.2.0  DBI_1.1.0        git2r_0.27.1     magrittr_1.5    
[45] scales_1.1.1     cli_3.3.0        stringi_1.5.3    farver_2.0.3    
[49] fs_1.5.0         promises_1.1.1   xml2_1.3.2       bslib_0.3.1     
[53] ellipsis_0.3.2   generics_0.0.2   vctrs_0.4.1      tools_4.0.3     
[57] glue_1.6.2       hms_1.1.2        fastmap_1.1.0    yaml_2.2.1      
[61] colorspace_1.4-1 rvest_0.3.6      knitr_1.39       haven_2.3.1     
[65] sass_0.4.1